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Categorization and Analysis of Pain and Activity
in Patients With Low Back Pain Using a Neural
Network Technique

John J. Liszka-Hackzell1,3 and David P. Martin2

Low back pain represents a significant medical problem, both in its prevalence and
its cost to society. Most episodes of acute low back pain resolve without significant
long-term functional impact. However, a minority of patients experience extended
chronic pain and disability. In this paper, we have explored new techniques of patient
assessment that may prospectively identify this minority of patients at risk of developing
poor outcomes. We studied 15 patients with acute low back pain and 25 patients with
chronic low back pain over 4 month’s time. Patients monitored their pain and activity
levels continuously over the first 3 weeks. Pain and functional status were assessed
at baseline and at 3 weeks following enrollment. Follow-up assessment of functional
status and progress were performed at 2 and 4 months. The pain and activity levels
were categorized using a self-organizing-map neural network. A back-propagation
neural network was trained with the categorization and outcome data. There was a
good correlation between the true and predicted values for general health (r = 0.96,
p < 0.01) and mental health (r = 0.80, p < 0.01). No significant correlation was found
if activity and pain data were not entered into the analysis. Our results show that neural
network techniques can be applied effectively to categorizing patients with acute and
chronic low back pain. It is our hope that future research will allow these categorizations
to be tied to prognostic and therapeutic decisions in patients who present with episodes
of back pain.
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INTRODUCTION

Low back pain represents a significant medical problem, both in its prevalence
and its cost to society. Most episodes of back pain respond adequately to conser-
vative therapy, but some patients will continue to suffer chronic back pain for long
periods, incurring significant medical expenses and absence from work.(1–3) Since
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most patients will respond favorably to conservative measures, aggressive steps are
not indicated early in an episode of back pain. However, it is speculated that early
aggressive therapy may be beneficial for the minority of patients who do not improve
with conservative therapy. This presents a dilemma because it is difficult to predict
which patients are destined not to improve with conservative measures. In this paper,
we have explored new techniques of patient assessment that may have prognostic
value in this group of patients.

Pain is inherently a subjective experience and therefore cannot be objectively
measured and analyzed. Nevertheless, we may be able to determine more information
from patients by using a new technology in assessing symptoms continuously over
time, and by using new mathematical techniques to analyze the data. In this paper,
we have used an electronic symptom diary and activity meter to assess patients
continuously. Neural network mathematical techniques have been applied to the
data to categorize the history of the pain and activity levels.

Very little has been done on categorization of pain and activity levels in patients
with back pain. Categorization of these variables may provide different pain and
activity patterns that may contain information related to prognosis or outcome for
the individual patient. Pain intensity level data are difficult to process and analyze
since the measurements are highly subjective. It may therefore be more reasonable
to study patterns rather than absolute levels. Also, by using artificial intelligence (AI)
techniques, the chances of extracting important information may be facilitated.

Neural networks(4,5) and especially self-organizing map neural networks(6) are
powerful tools when working with categorization problems. By using neural net-
works, a statistical model may be easily developed from experimental data. The
knowledge in the model is a product of the learning process that the network under-
goes while training data is presented to it and the network properties are adjusted.

In this study, we have used the wavelet transform to process the activity level data
prior to subjecting it to the neural network categorization process. This is necessary
since the characteristics of the two variables are very different. The pain levels are
sampled on average every 90 min, and have predominantly low frequency content.
The activity levels are sampled as counts (pulses) every 1 min. By using a wavelet
filtering technique, the activity levels are processed to allow accurate analysis of the
two variables together.

In addition to the pain and activity level data, we also collected pain status data
using the McGill Pain Questionnaire (MPQ),(7) functional status from the SF-36
questionnaire(8) and a progress score at various times during the study period. The
pain and activity level category data were then used together with the MPQ data,
the SF-36 data and progress scores to train a back-propagation neural network. This
back-propagation neural network was then used to make predictions about patient’s
progress at 2 months and 4 months as well as their functional status at 4 months.

METHODS

The protocol was reviewed and approved by the Institutional Review Board.
We studied 15 patients with acute low back pain (<6 months) from both the Urgent
Care Center and Emergency Department. Another 25 patients with chronic low back
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Table I. Inclusion Criteria

Chronic low back pain Acute low back pain

Low back pain >6 months Acute onset low back pain
Age 18–75 No history of spine surgery
English speaking No previous episode within the last year
Able to consent Age 18–75
Able to use pain diary English speaking

Able to consent
Able to use pain diary

pain (>6 months) were studied from the Spine Center. The patients were between
the ages of 18 and 75. The inclusion criteria are listed in Table I.

All patients were interviewed by a nurse coordinator to confirm eligibility. Dur-
ing the initial meeting the data collection procedure was explained. An initial func-
tional status was obtained using the SF-36 questionnaire (SF-36-1) as well as a pain
status using the McGill Pain Questionnaire (MPQ1). Each patient was asked to mon-
itor his or her pain and activity levels continuously during a period of 3 weeks. Pain
levels were recorded every 90 min between 8 A.M. and 10 P.M. (0800–2200) using an
electronic diary.

The Electronic Symptom Diary is a pager-sized device developed at Mayo Clinic
for collecting symptoms from patients over time (Fig. 1). Patients were instructed to

Fig. 1. The Mayo Clinic Electronic Symptom Diary.
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Table II. Description of the Progress Score (PS) Used in
This Studya

Progress score Description

3 Complete improvement
2 Significant improvement
1 Some improvement
0 No change
−1 Some deterioration
−2 Significant deterioration
−3 Complete deterioration

aPatients were asked to quantify how their back pain was
compared to when they initially enrolled in the study.

quantify their pain using a numerical rating scale, and enter the value by pressing one
of the buttons labeled from 0 to 10, where 0 is no pain and 10 is the worst possible
pain. Their entry was stored in the device along with the corresponding date and
time. Patients were prompted by the diary to enter the scheduled measurements,
but could also enter measurements at any time. They were encouraged to enter
additional measurements as often as they wanted, emphasizing the importance of
recording symptoms at their peak and nadir as well as intermediate values. At the
end of the session, the data were downloaded for analysis.

Activity levels were monitored using an AW-64 Actiwatch (Mini-Mitter Inc.).
The Actiwatch passively measures activity,(9,10) and patients were asked to wear it
continuously on their nondominant arm for the duration of the study. The activity
was sampled as accumulated counts every minute. The patients were contacted by
telephone on the second and tenth day of the study to provide an opportunity for
further patient information. At the end of the 3-week pain and activity level data
collection, the patients were again called over the telephone and asked to return their
equipment. At that time, they were also asked to provide a progress score (PS1) as
well as a second McGill Pain Questionnaire (MPQ2). The progress score was defined
according to Table II.

Patients were again contacted at 2 months time when they were asked for a
second progress score (PS2). Finally, patients were asked to complete a second func-
tional status using the SF-36 (SF-36-2) at 4 months time. At this time the study was
completed. Figure 2 shows the data collection sequence.

The time series were compared for each 0800–2200 period to assure that both
time series were complete. Only the data collected between 0800 and 2200 each
day were used for further analysis. Any incomplete time series were discarded. If
the activity level time series for a certain day was incomplete, the corresponding
pain level time series was also discarded and vice versa. Any patient who had not
collected at least 14 complete time series (14 days) was dropped from the study.
Also, the MPQ(7) and SF-36(8) questionnaires were processed according to their
accompanying guidelines. The progress scores were processed according to Table II.

The activity level time series were sampled every 1 min. The pain level time
series were sampled on average every 90 min. In order to further analyze the two
time series, they had to be converted so that they would appear as if they had both
been sampled at the same even intervals. The analysis was performed as outlined
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Fig. 2. The sequence of data collection during the study.

in Fig. 3. The two time series show very different frequency content, not only due
to different sampling rates, but also due to the different processes producing each
time series. Further analysis required the activity level time series to be threshold-
filtered using the wavelet transform.(11,12) The activity level readings consist of two
components: a stochastic component reflecting random activities in each patient,
and a deterministic component corresponding to the general trend of activity in each

Fig. 3. Flowchart of the data analysis sequence.
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patient. The separation of these two components may be done using threshold filter-
ing. A percentage of the maximum wavelet coefficient magnitude was selected in a
way such that the maximum kurtosis of the deterministic component was obtained.
This way, the maximum deviation from a gaussian amplitude distribution was deter-
mined, which is the characteristic property of the deterministic component. It was
found that a 7% threshold gave the best separation for these data. Simultaneously
with the threshold filtering, the signal was also low-pass filtered in the frequency
domain. This procedure is probably unique in the way that it reproduces the general
trend of the activity data without influencing its level.

In the filtered activity level time series, every 10th measurement was kept and
a new activity level time series was created. This new activity level time series ap-
peared as if it was sampled every 10 min. The original pain level time series was
interpolated using cubic splines,(13) to appear as if it would have been sampled every
10 min. The new time series now had equal length and sampling interval. Both time
series now consisted of 84 measurements each corresponding to each 0800–2200 in-
terval. We had to make the assumption that an interpolation of the pain level time
series would reflect the change in pain levels outside the collected measurements.
Collection of pain levels requires the patient to manually enter a measurement into
the electronic diary when prompted. To prompt the patients more often than every
90 min over 3 weeks would likely have negatively affected compliance with the study.
From our own clinical knowledge, we feel that an interpolation with cubic splines
most accurately reflects this process.

Data from 20 randomly selected patients was used to train a self-organizing
map neural network. The self-organizing map consisted of 168 processing elements
(PE) in the input layer, a 14 × 14 PE Kohonen layer and a 2 PE output layer. The
neural network software that was used in this study was NWORKS Professional 2
(NeuralWare Inc.). Recall was then done with the whole group of 40 patients. The
output from the self-organizing map showed separation of patients into different
patterns (Fig. 4). The self-organizing map output from 30 randomly selected patients
together with their corresponding SF-36-1, MPQ1 and MPQ2 as well as PS1 was then
used as input values for training a back-propagation neural network. The desired out-
put values during the training sequence were PS2 and PS3 as well as the SF-36-2.
Finally, recall was done with the trained back-propagation neural network using the
remaining 10 patients. The back-propagation neural network consisted of 17 PE in
the input layer, 27 PE in the hidden layer and 10 PE in the output layer. Correlations
between the true and predicted outputs were calculated. Another back propagation
neural network was trained using the above data, but without the input from the
self-organizing map. This was done to investigate the predictive properties of the ac-
tivity and pain information analyzed in the self-organizing map neural network. This
information was used to compare the complete back-propagation neural network
model with a back-propagation neural network model without the self-organizing
map output.

To ensure that the group of patients selected for training and the group of
patients selected for recall would accurately reflect the statistical properties of the
entire group, a test was performed by comparing 10 different randomly selected
groups. These 10 groups showed similar statistical properties and distributions and
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Fig. 4. Output from the self-organizing map Kohonen layer. The X and
Y axes show the Kohonen coordinates as presented by the output layer.
This example shows measurements of five different patients that map into
two distinct parts of the Kohonen layer.

it was concluded that using one of these groups for recall and the remaining patients
for training would be appropriate.

RESULTS

The average age of the patients that completed the study was 48.4 years. There
were 24 males and 16 females. Of the 62 patients that were initially enrolled, 40 pa-
tients completed the study (15 patients with acute back pain and 25 patients with
chronic back pain). The number of complete time series (activity and pain) of those
who completed the study was on average 17 of 21. The main reason why patients
did not complete the study was that it caused inconvenience by requiring too much
time and patient effort. The output from the self-organizing map neural network
showed separation of different patients into different areas of the Kohonen layer,
with some patients showing a larger change during the 3-week activity and pain level
measurements (Fig. 4).

The output from the back-propagation neural network in the 10-patient test
group during recall showed significant correlations between the true and predicted
values of the SF-36 scores describing general health and mental health. None of the
other SF-36 or PS scores showed significant correlations. The correlation coefficient
between the true and the predicted SF-36 score for mental health was 0.80 (p < 0.01)
and between the true and the predicted SF-36 score for general health was 0.96
(p < 0.01). The scatter-plots are shown in Fig. 5.

In an attempt to make the same predictions from another back-propagation
neural network without the activity and pain information from the self-organizing
map, we found that correlations became nonsignificant (mental health r = 0.33 and
general health r = 0.40).
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Fig. 5. Scatter-plots between the true and predicted values of the SF-36 scores describing mental health
(left) and general health (right).

DISCUSSION

Neural networks are in wide use in many different areas of science and medicine.
Within medicine, neural networks have been applied to analysis of medical images,
medical signal processing, and clinical and laboratory data.(14) Especially problems
concerning pattern recognition and classification have been successfully analyzed
using these techniques. Some examples are character recognition, etiology of low
back disorders, and interpretation of sonar signals from underwater objects.(15–17)

Neural networks have been shown to be superior to both conventional statisti-
cal methods and manual/specialist-based analysis in many studies. There are many
benefits in using neural networks compared to conventional statistical methods.(14)

By using neural networks, more complex tasks can be learned from examples
than by using conventional statistical techniques. Another benefit is that both qualita-
tive and quantitative data can easily be included in the same model. Neural networks
perform well in analysis of nonlinear multivariate data. Also, a fully trained neural
network can be used for further analysis of new data in or close to real-time.

The disadvantages related to the use of neural networks includes difficulties of
expressing their function/knowledge in a simple way. Validating the network results
may be more difficult than with conventional statistics.

Hedén studied a neural network’s capability to identify acute myocardial in-
farction in the 12-lead ECG, and compared it to conventional rule based analysis
and analysis by an experienced cardiologist.(18) The neural network showed higher
sensitivity and discriminant power than both the rule based interpretation program
and the cardiologist.

Another study by Veselis et al. used neural networks to differentiate similar
EEG spectra, and compared it to discriminant analysis, visual recognition by the
experimenters, and analysis of variance (ANOVA).(19) Discriminant analysis per-
formed as well as neural networks. Both these methods gave significantly better
results than visual recognition by the examiners and ANOVA. Also, in this study, the
authors showed that it was not possible to identify some patterns with conventional
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methods, but that it was possible to do so using neural networks or discriminant
analysis.

Bounds used neural networks in the diagnosis of low back disorders.(17) The
study of Bounds was based on a list of symptoms and physical findings obtained from
each patient in the study at one point in time. The data were then classified as one of
four defined diagnoses. Bounds also compared the neural network with other pattern
recognition methods such as diagnosis by a group of experts, K-Nearest Neighbor
and Closest Class Mean. The neural network approach outperformed the clinicians,
and performed as well as or better than the other pattern recognition techniques.

In Fast-Fourier Transform (FFT), the analyzed signal is folded using a complex
sine wave of constant amplitude and varying frequency. That way, the signal is de-
composed into a frequency spectrum. With wavelets,(11) the analyzed signal is folded
with a “mother wavelet,” which may have different forms, but is limited in the time
domain. A special form of wavelets is the Morlet wavelet, which is a locally peri-
odic wave-train that is related to windowed Fourier analysis. It is obtained by taking
a complex sine wave and localizing it with a Gaussian (bell-shaped) envelope. An
advantage of wavelet analysis is that its resolution varies with the frequency of the
signal. The largest difference between the Fourier transform and the Morlet wavelet
is that there is a constant width window used in the Fourier transform, while the
window width decreases with frequency in the Morlet wavelet.

In wavelet analysis as compared to Fourier analysis, the frequency in a dynamic
frequency spectrum is referred to as the time scale. Rather than a frequency spectrum,
a scalogram with a reversed Y-axis (due to the use of a time scale instead of a
frequency scale) is produced by wavelet analysis. The spectral density in the Fourier
spectrum is comparable to the wavelet coefficient magnitude, the frequency step is
referred to as dilation and the time step with which the window is moving becomes
the translation.

A valuable property of wavelet analysis is that in addition to conventional fil-
tering in the frequency domain, it is possible to perform filtering in the domain of
the wavelet coefficient magnitude.(12) The simplest form of this filtering technique
is threshold filtering, where the signal may be decomposed into two parts. One part
corresponds to wavelet coefficients above a certain magnitude (threshold) while the
other part corresponds to wavelet coefficients below the threshold (strong and weak
component). This procedure is important when working with signals of different
character, for example, a signal with a stochastic and deterministic component.

In this study, the output from the self-organizing map indicated that the pain and
activity patterns in these patients have different properties. Some patients showed
a more stationary appearance while others showed a pattern that covered a larger
area of the Kohonen layer. It appears that patients who experienced a small change
in either their pain or activity levels were more stationary as indicated by the self-
organizing map output. Different patients also mapped to different geographic areas
of the Kohonen layer. It would be reasonable to assume that different parts of the
Kohonen layer reflect different properties of the corresponding pain and activity
levels. The output from the Kohonen layer was, together with the initial MPQ, SF-36,
and progress score, used to make predictions about the patient’s 2- and 4 months
status.
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We were able to accurately predict the 4-month SF-36 scores describing general
and mental health using a neural network model trained with activity and pain level
data collected during an initial 3-weeks period in combination with initial MPQ,
SF-36, and Progress scores. Prediction of the general health score (r = 0.96) showed
a higher correlation coefficient than the mental health score (r = 0.80). The general
health score reflects the patient’s perception of their overall health, while the men-
tal health score describes the patient’s mood. It is not entirely clear why the general
health score was easier to predict than the mental health score. We were unable
to make predictions of the remaining 4-months SF-36 scores or the progress scores
at 2 and 4 months. It appears that the activity and pain information processed in
the self-organizing map neural network is vital to the predictive performance of the
back-propagation neural network, since a back-propagation neural network without
input from the self-organizing map is unable to provide acceptable predictions.

One must consider that we have only investigated a small group of patients and
that this should be considered a pilot study. At the same time, the results may indicate
that there is prognostic information in the input data. It may indirectly suggest that
back pain affects a patient’s perception of their general or mental health. If one
would expect a low predicted general- or mental health estimation in a patient, that
patient may benefit from a more aggressive management.

The difficulty to predict the 2- and 4 months progress scores may be explained
by the fact that the progress score was designed to reflect change. However, one can
question how well a patient can quantify a change over a longer period of time due
to recall bias. We must conclude that our inability to accurately predict the progress
score should have been anticipated and may be impossible due to the characteristics
of this variable.

In conclusion, our results show that neural network techniques can be applied
effectively to categorizing patients with acute and chronic low back pain. It is our
hope that future research will allow these categorizations to be tied to prognostic
and therapeutic decisions in patients who present with episodes of back pain.
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