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Abstract

While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature,
its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now
show that the time evolution of its magnitude can be captured with continuous online ratings. Here we use such ratings to
model quantitatively the temporal dynamics of thermal pain perception. We show that a differential equation captures the
details of the temporal evolution in pain ratings in individual subjects for different stimulus pattern complexities, and also
demonstrates strong predictive power to infer pain ratings, including readouts based only on brain functional images.
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Introduction

Any scientific or philosophical examination of human percep-

tion invariably must take into consideration the long-lasting notion

of the subjectivity of pain. Plato, Aristotle, Galen, and Darwin

excluded pain from other sensory modalities and instead classified

it with emotions. Avicenna (or Ibn Sina), the 11th century Arab-

Persian philosopher-physician, is credited to be the first to suggest

pain as a specific skin sense; this idea was later reformulated by

Descartes, who conceptualized pain signaling from the skin to the

brain [1,2]. The notion of subjectivity and thus incommunicability

of personal pain was seminal in Wittgenstein’s abandonment of

logic and shifting the emphasis of 20th century philosophical

inquiry towards the study of language, in order to understand how

such a private experience can be communicated at all [3]. More

recently, D. Dennett has argued, based on modern neuro-scientific

understanding that due to its subjective nature, and in contrast to

visual perception, pain cannot be captured in computational

models [4]. Indeed, the official definition of pain as accepted by

the International Association for the Study of Pain states that pain

is ‘‘an unpleasant sensory and emotional experience’’, and

expands to assert that, ‘‘pain is always subjective’’ [5].

In contrast, psychophysics from its inception in the 19th century

has attempted to demonstrate that at least parts of human

experience/perception can be captured quantitatively and de-

scribed with simple models. Beginning with the work of E.H.

Weber and culminating with S.S. Stevens’s law of magnitude

perception, statistical properties of pain have been quantified and

modeled using simple equations [6–8]. Currently, statistics of pain

are most commonly quantified with questionnaire-based tools, and

these remain the main instruments with which efficacy of pain

therapies are studied in clinical trials, for example [9,10].

Temporal profiles of pain perception, however, have been seldom

studied [11–13]. Yet, with the advent of human brain imaging

technology the need for tracking pain perception in time prompted

a number of groups to study pain perception as a time-evolving

phenomenon [14–17].

A result that has surprised the pain research community is the

presence of strong temporal non-linearities in the relationship

between the stimulus pattern and the corresponding ratings,

including illusory perception of heat and warmth [16] which do

not appear to fit any cogent framework and yet can be linked to

brain activity [18,19]. With this as a starting point, we treat here

time evolution of acute thermal pain perception as a dynamical

system described by differential equations, the properties of which

provide a general summary of the transformation of thermal heat

parameters to pain perception space. Surprisingly, simple and

interpretable first- and second-order differential equations with

very few parameters accurately model time variability of pain

perception in humans elicited by thermal stimulation patterns of

varying complexity. The equations can be used to infer with high

accuracy the response of individuals in modeling conditions that

include access to the stimulus temperature and in ‘mind reading’

setups, i.e. when pain perception is solely inferred from functional

images of the brain aided by the derived equations.

Results

Psychophysics Modeling
Given that perception of pain is a slow event and can be rated

continuously, online continuous ratings of thermal pain can be

readily generated [14–17]. When the stimulus intensity on the skin

is monitored together with the resultant ratings of pain, one can

view this as a system identification problem where the input and

output are continuous time varying variables.

We reason that behavioral and evolutionary constraints require

thermal pain to display three basic features. First and foremost,

it must signal the threat of tissue damage: this is obviously
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determined by the current value of the skin temperature. The

signal magnitude must monotonically increase with the temper-

ature, although not necessarily linearly (as in fact, tissue damage is

not linear with temperature). Following standard psychophysical

practice, we consider the perceived magnitude of pain to be a

positive quantity, i.e. we exclude the possibility of negative pain.

Secondly, this magnitude must anticipate the possibility of

damage, sounding the alarm of an imminent threat given the

recent history of temperature values, independently of the current

temperature. This information can be partially captured by the

rate of change of the skin temperature. Finally, given its powerful

hold on behavior, the intensity of pain perception must quickly

decay once the threat of damage disappears, so as not to interfere

with ongoing mental states [20,21]. Following these basic

principles, we model pain perception as a dynamical system using

a second-order differential equation:

€pp(t)~aF (T(t),T0){b _pp(t)zc( _TT(t){l)p(t) ð1Þ

Here p(t) is the instantaneous perception of pain at time t, T(t) is

the temperature, €pp(t)~
d

dt

dp

dt

� �
is the pain acceleration, _pp(t)~

dp

dt

and _TT(t)~
dT

dt
are, respectively, the pain’s and temperature’s rates

of change. We explicitly constrain the dynamics to maintain the

non-negativity of perception, p(t)§0, by imposing the boundary

condition p(t)v0[ _pp(t)~0.

The quantities T0,a,b,c,l are subject-specific constants. The

first term in the right-hand-side represents the temperature-

dependent ‘‘force’’, whose functional form we model, for the sake

of parsimony, with a step function (Figure 1 inset):

T§T0[F (T ,T0)~T{T0,TvT0[F(T ,T0)~0, that is, the

acceleration of the perception of pain takes effect only after the

threshold T0 is exceeded. The second term is the decay of pain or

‘‘forgetting’’, which helps perception return to its minimal value

upon the removal of the injury threat presented by TwT0, and

also dampens the oscillations that naturally arise in a second-order

dynamical system. The constant b has units of 1/time, and

therefore 1=b can be considered the time scale of the forgetting

process. The third and last term is less intuitive, but equally

meaningful from a functional perspective. It can be thought of as a

dynamic restoring force, similar to the elastic term in the equation

that describes a mechanical oscillator. When the derivative of the

temperature is small enough, the term is negative and has the

effect of limiting the pain level upon the continuing presence of a

supra-threshold stimulus, as well as eliminating any sub-threshold

pain fluctuations. When the temperature changes quickly,

however, the effect of this term is more interesting. In the event

of a temperature increase, the term becomes a driving force that

helps accelerate the perception of pain, to build up an alerting

signal that anticipates the upcoming threat of the temperature

reaching and surpassing the injury threshold. Similarly, when the

temperature drops fast, the term becomes a restoring force,

pushing pain perception faster than the decay term and the passive

restoring force would allow. Notice that this creates an asymmetry

in the rise and fall time-constants, even when the rate of

temperature change is the same in absolute terms: if the

temperature drops when the pain perception is high, the

restoration is much faster than the rise, for a similar rate of

change of the temperature. The constant c determines the

intensity of the restoring/driving force, while l can be considered

as a threshold above which fast changes in temperature become

alarming.

The different effects of the three terms are illustrated in

Figure 1, which depicts the evolution of pain perception averaged

across subjects (blue trace) upon the presentation of an evolving

temperature stimulus (dashed trace) (figure 7, from [16]; corre-

sponding to our complex stimulus) and the best-fit inferred model

(red trace). The temperature forcing term provides the basic effect

of quickly increasing the magnitude of pain perception (first arrow

on the left). An equilibrium intensity is reached by the combined

limiting effects of the restoring force and the decay term (second

arrow). The active form of restoring force (i.e. when _TT=0) is most

evident in the effect of the small kinks in temperature (third and

fourth arrows).

In order to understand to what extent the complexity of the

second-order dynamical system of Eq. 1 is warranted and the fit to

the psychophysical pain ratings significant, we considered two null

hypotheses and a model simplification to contrast our results. In

the first place, we reasoned that the simplest approach for the

nervous system to report thermal pain is by a direct correlation

with the temperature, i.e. p(T)!T . This null hypothesis is, in fact,

too simple: the linear proportionality implies that temperatures a

few degrees below the skin injury threshold will be reported only

with proportionally weaker intensity than those a few degrees

above the threshold. Alternatively, we considered a model in

which perception is linearly proportional to the temperature, but

only once it has exceeded a subject-dependent threshold. For

obvious reasons, we termed these two null hypotheses as the linear

and threshold-linear models, respectively; in the latter case, the

temperature threshold is estimated by optimizing the correlation

between model and data. The linear null hypothesis has several

disadvantages; most glaring among them is the fact that it reports

sub-threshold temperatures, which do not necessarily pose a threat

of injury, almost as intensely as those that do pose a threat.

Similarly, the threshold-linear model is impervious to events that

fall below threshold but may signal an imminent threat, such as a

sudden increase in temperature. To further probe the significance

of our model, therefore, we considered a simpler first-order system

derived from Eq. 1, assuming that the following conditions are

satisfied: (a) the decay constant is sufficiently large, b&1 (i.e. the

time scale 1=b is short), and (b) the effect of the rate of change of

the temperature is not significant, l&1. Simple algebra leads then

to the following first-order differential equation:

_pp(t)~�aaF (T(t),T0){�ccp(t) ð2Þ

Where �aa and �yy are subject-specific constants. The functional form

of this equation is similar to that of a leaky capacitor, with the

Author Summary

We propose a model of thermal pain perception that
accounts for its dynamical behavior, and can be used to
predict subjective responses to thermal stimulation on
individual subjects with high accuracy, close to 90%
averaged over subjects (over 65% for the null hypothesis).
The model is based on behavioral considerations that
include the need to signal current or approaching tissue
damage, and the need to discount past danger. Moreover,
we show that in a ‘mind reading’ setting, the combined
use of sparse regression to infer pain perception from
functional MRI recordings (fMRI), and from the model
applied to the stimulus temperature also inferred from
fMRI, leads to equally significant predictive accuracy, close
to 75% averaged over subjects. Our results demonstrate
that a subjective percept such as pain displays a highly
deterministic behavior.

Dynamics of Pain
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forcing affecting now the rate of change of perception (as opposed

to the acceleration), and a restoring force that determines a unique

time-constant 1=�cc for both rising and falling of perception.

To test the relative merits of these models we performed

psychophysical experiments, and contrasted model predictions.

We designed two stimulation types: a simple stimulus in which the

temperature ranges between a sub-threshold value and a supra-

threshold value that is maintained constant during blocks [14], and

a complex stimulus in which the blocks of supra-threshold

temperature are interspersed with shorter blocks of higher

temperature values [16] (see Methods for details). Figure 2A–F
depicts an example of fitting a single subject’s rating of a simple

and a complex stimulus. Simple (panel E) and complex stimuli

(panel F) are modeled using the first-order (panels A and B,

respectively) and second-order models (panels C and D). Observe

that while for the simple stimulus the two models appear to fit

similarly well, the complex stimulus highlights the ability of the

second-order model to capture the subtleties of the rating. Similar

results were seen in all subjects studied (Figure S1).

The results of fitting the second-order model to the perceptual

data for all participants are summarized in Figure 2G, showing

the fit correlation for the second-order model contrasted with the

null hypotheses. The increase of model performance over the null

hypotheses is quite significant, reaching in some cases nearly 0.4,

while the mean model correlation is above 0.9 (Wilcoxon

matched-pairs signed-ranks test, Wp, pv0:002). Similarly, the

comparison with the first-order model (Figure 2H) shows that in

all but two cases the second-order model is a better fit to the actual

pain ratings (Wp, pv0:02). This increase in accuracy, however,

may be explained by the model’s larger number of parameters (5)

compared with those for the simpler first-order model (3), and the

two null hypotheses (1 for linear-threshold, none for linear). To

account for this, we computed the difference in the Akaike

Information Criterion (AIC) between the model and the null

hypotheses. AIC regularizes the goodness of fit with a penalty for

the number of free parameters in the model; Figures 2I–J show

the gain in AIC for the model over the null hypotheses, and the

first-order model, respectively, suggesting that overfitting can be

ruled out (see Methods). To further assess our approach, we also

compared the correlation between the derivatives of the rating and

of the model (Figure S2), and again we observe that the second-

order model outperforms the null hypotheses models (Wp,

pv0:0002) but not the first-order model (Wp, pw0:1).

We also considered the robustness and generalization capability

of the modeling approach with respect to other sources of

variability in the perceptual response. For that, we resorted to the

concept of predictive modeling, a statistical learning approach that

has gained increased acceptance in neuroscientific data analysis

[22]: the parameters of a model are learned using training data,

and then the goodness-of-fit evaluated on previously unutilized test

data, as a means to estimate the model’s generalization ability. We

therefore computed the model parameters for each subject in the

Figure 1. Reported perceptual pain level (blue), input temperature (dashed) and model (red). The experimental result is from [16] (their
fig. 7). The vertical axis represents the subjective perceptual level (or applied temperature, dotted line), and the horizontal axis the time in seconds.
The arrows point to the most evident effects of the three different components that drive pain perception: acceleration when the temperature
exceeds the threshold (first arrow, left), dampening of oscillations (second arrow), and temperature change-dependent acceleration and restoring
(third and fourth arrows). The small inset depicts the functional dependence of the forcing term with the temperature, which we chose to model as a
ramp function. Time is in seconds.
doi:10.1371/journal.pcbi.1002719.g001

Dynamics of Pain
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Figure 2. Examples of reported and modeled perception in a single subject, and adequacy of models across subjects. A–F: A single
subject’s pain rating (black) and fitted models (red), for a simple stimulus (E) using first (A) and second order (C) models, and for a complex stimulus
(F) fitted by first (B) and second order (D) models. G–H: Performance comparisons between models. G: Comparing second order model to linear
models, for simple (circle) and complex (triangle) stimuli. The linear model (red) corresponds to the null hypothesis that perception follows
temperature, while the threshold model (blue) assumes perception follows temperature above a threshold with the temperature threshold optimized
for each subject. H: Comparing first and second order models. Second order model outperforms linear and first order models; circles (triangles)

Dynamics of Pain
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first run of the experiment, and estimated the response for the

second, independent run using the same parameters. The results

show that test and train correlations are still very similar (Figures
S6, S7A). To understand the population effect of the stimulation

paradigm and the modeling, we also fitted an average model of all the

subjects, and then tested generalization efficacy of this model

(Figure S7B). While the simple stimulus condition is not significantly

affected, the complex stimulus shows a large decrement in the

generalization ability of the model, indicating that responses to

higher temporal structure are dependent on individual sensitivity

parameters. A more rigorous test of generalization, however, involves

predicting one class of stimuli in one run (i.e. complex in run 2) with

parameters fitted to the other class and the other run (i.e. simple in

run 1). Prediction of complex stimuli with parameters fitted to simple

stimuli yields a group average of r = 0.68, over r = 0.93 for the

estimate. Prediction of simple for parameters fitted to complex yields

r = 0.84, very similar to the average of r = 0.89 for the estimate (see

Figure S7D–E). The higher efficacy of the latter setup is consistent

with the idea that the more complex stimuli can reveal the full

dynamical structure of the responses, and therefore be more robust to

generalization.

Psychophysics and Physiology
One of the practical applications of predictive modeling in

neuroscience is its use in ‘‘mind reading’’ setups, i.e. the possibility

of obtaining precise information about perceptual and cognitive

states, such as words or images presented to subjects in the fMRI

scanner, by applying a predictive model to fMRI data [22]. The

ability to predict and reconstruct with high accuracy external

stimuli under certain conditions has proved to have enormous

implications for basic research and brain-machine applications

[23–25]; however, predictive modeling of clinically relevant

measures has shown to be more elusive. To further demonstrate

the relevance of our findings, we analyzed the impact of including

the analytic model in a predictive setup, as follows: (a) we trained a

predictive linear model with regularizing constraints, the Elastic

Net [26,27], to infer pain ratings from full-brain fMRI traces,

utilizing TR volumes (i.e. the brain images acquired at each time

point) concurrent with the ratings as independent samples (hereby

labeled EN model); (b) we trained a model as in (a), but using up to

7 TR volumes previous to the time the ratings are reported, and

using as predictors only voxels that have a time-lagged correlation

with the target variable above a threshold (0.2 in this case) (EN w/

lags model); (c) we trained a model as in (a) and combined it

linearly with the analytic second order model, Eq. 1, trained on

the same data using both temperature and pain ratings (Combined

model). Specifically, the model is trained to infer the pain ratings

from fMRI traces, independently infer the temperature from fMRI

traces, obtain a second estimate of the pain ratings through the

application of the dynamical model to the inferred temperature,

and then combine both predictions into one. Finally, (d) we

trained an unconstrained, linear ordinary least-squares model

(OLS), with the same conditions as in (a) (Figure 3A).

With this setup, we then computed the predictive accuracy of

the combined model to infer the pain ratings on unseen test data,

using only the fMRI traces, and compared it with the predictions

of the EN model, the EN w/lags model (to compensate for the

intrinsic use of the recent history in the analytic model), and the

OLS model (Figure 3B). The results are shown in Figure 3C–D,

which displays for each subject the predictive accuracy of the EN,

EN w/lags and OLS models in comparison to the Combined

model. The Combined model shows a significant improvement in

predictive accuracy over the other three models, including EN w/

lags, which includes delayed information and helps it to predict

better than EN. In all cases, the increase in accuracy is statistically

significant (Wp, pv0:01). These results demonstrate that our

dynamical model can be successfully combined with physiological

measurements in order to obtain further insights into the

mechanisms of pain perception, and eventually used as a scaffold

for experimental manipulations. Moreover, given the high

accuracy of the predictions, we conclude that ‘‘mind reading’’ of

subjective pain perception is practically attainable.

Model Consistency
Besides the model’s predictive efficacy, it is important to

understand how consistent it is with respect to the known

phenomenology. In particular, the distribution of threshold

temperatures over the population (Figures S1, S4, S5) closely

matches classic values determined by rigorous psychophysical

methods [28]. The other easily interpretable parameter of the

model, the decay time-constant, also shows a reasonable distribu-

tion of values, as well as a good match between the second-order

and the simplified first-order models (Figures S1, S4, S5).

In order to assess the significance of each of the terms

contributing to the description of the perceptual dynamics in Eq.

1 and Eq. 2, we computed all pair-wise correlations between the

corresponding fitted parameters in the second-order model. High

correlation between two terms may indicate a redundancy in model,

or perhaps an even worse inadequacy of the model to capture the

essential features of the dynamics. Of all pairs (Table S1), only two

reach statistical significance: between b and c(r = 0.56, p = 0.01), and

between cand l (r = 20.53, p = 0.017). It is instructive to contrast

these values with the result of performing a similar computation

with the fitted parameters for the first-order model; in this case, the

correlation between �aa and �cc is significant (r = 0.72, p = 0.0003). A

parsimonious interpretation of these results is that the simplification

of the dynamics introduces correlations between terms that do not

properly describe it. Given that the second-order model performs

better, we conclude that the more complex model is also a better

representation of the dynamics. Moreover, while the two correla-

tions are significant, their actual value (r&0.5) implies that their

contributions are not redundant.

We tested more radical variants of the modeling approach, in

order to test its goodness-of-fit in a ‘‘functional space’’. In

particular, Eq. 2 was expanded to incorporate two time-constants,

slow and fast systems corresponding to the physiology of slow

(unmyelinated) and fast conducting (myelinated) nociceptive

afferents [29]; we determined that such models do not substan-

tially improve prediction of pain ratings (Figure S9). In fact, the

apparent presence of two time-constants in the perceptual

dynamics is accounted for, in Eq. 1, by the p _TT term, which

models the decay of perception after the temperature drops below

threshold as faster than the rising time-constant (because p is

higher in the former than in the latter, see Figure 1).

correspond to simple (complex) stimuli. Correlation fit, r (zero lag Pearson correlation), measures accuracy of models to pain perception ratings. Each
symbol/category is outcome for an individual subject. Dashed lines are the identity. I–J: Akaike Information Criterion analysis for the fits shown in
panels G–H. The vertical axis corresponds to the gain in fit accuracy of the second order model over the null hypotheses (I) and the first order model
(J), when a penalty for increased number of parameters is discounted. The color/shape is the same as for panels G–H; the horizontal axis corresponds
to different subjects.
doi:10.1371/journal.pcbi.1002719.g002
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Figure 3. Scheme and performance for predictive modeling of pain ratings from brain activity. A. Depicts the learning phase, where the
relationships between BOLD signal and temperature, BOLD signal and perception, and temperature and perception are learned on the training data.
B. Corresponds to the prediction phase, where for three approaches (OLS, EN and EN w/lags) the learned model is used to infer the pain rating from
the BOLD signal (red pathway), whereas for the Combined model the first inference is combined with the inference of temperature from BOLD, and

Dynamics of Pain
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A large psychophysical body of literature shows that static

ratings of thermal pain, similarly to other sensory modalities,

follow S.S. Stevens’s power-law for perceived magnitudes [8],

suggesting that the dependence of dynamics of pain perception on

temperature might be better modeled by a power function. As this

law describes the stationary or steady-state response to pain, as

opposed to its dynamical behavior, we cannot directly compare it

against our model. However, we considered that it would be

possible to extend the model to encompass power-law stationary

responses. Given that this requires an additional parameter (the

exponent), it is more reasonable to consider an extension of Eq. 2,

in which the term driven by the difference between the current

temperature and the threshold is modified by an exponent, leading

to:

_pp(t)~�aa Fr(T(t),T0)
� �

{cp(t) ð3Þ

where T§T0[Fr(T(t),T0)~(T{T0)r,TvT0[Fr(T(t),T0)~0,

and r is an additional parameter. Performance of this new model

was contrasted to Eq. 2, yielding results that are comparable but

slightly poorer, even though the model has one more parameter.

To summarize, the mean correlation over simple and complex

stimuli was 0.90 and 0.87, compared to 0.92 and 0.88 for Eq. 2.

We also observe that as long as c and T0 are fitted for individual

ratings, proportionality constant �aa and the power parameter r
compensate for each other (range for r was 2.97 to 20.28,

mean = 1.0 and SEM = 0.3), and c and T0 converge to the same

optimal values as found for Eq. 2 (performance measure between

Eq. 2 and Eq. 3 using either r or SSE shows a correlation of 0.99,

p = 0).

Our model can capture, in a single framework, perceptual

behaviors that are usually considered as disparate. Given that the

perception of pain can be parceled into separate dimensions and as

recent evidence suggests that the temporal dynamics of these

modalities may have unique properties that depend on stimulus

intensity [28], we examined the properties of our models for the

percept of burning. When subjects were instructed to report the

magnitude of burning pain [28], we observed similar rating

profiles and model fitting to the perceived magnitude of pain,

indicating that the modeling approach may be equally applicable

to sub-modalities of pain.

Similarly, our model encompasses the different behaviors

associated with offset analgesia (OA). While OA is usually defined

by the de-sensitization to the same noxious temperature following

exposure to a more noxious one [16] (a feature essentially captured

by our model, cfr. Figure 1), other more subtle features have been

reported in the literature under the OA characterization, of which

we will consider the main two. The first one is the observation that

temperature fall rates in the range of 0.1 to 0.5uC/sec are barely

detected with continuous ratings of pain [16]. We tested whether

our second order model will also show less sensitivity to stimulus

offset rates, in comparison to the first order model, where

perception fall rates should better reflect stimulus fall rates.

Figure S10 shows that in fact these predictions are correct (the

model closely captures pain ratings as described in figures 3 and 4

in [16]). A second observation regarding OA is that pain

perception magnitude for increasing intensities shows different

patterns when the stimulus has an additional one degree

perturbation (offset stimulus) in contrast to when the stimulus is

kept at a constant level or returns to baseline [30]. Again our

second order model captures these features better than the first

order (Figure S11), and in fact our model replicates figures 2–5 in

[30].

Methods

Psychophysics
Participants. Twelve healthy subjects participated in this

part of the study: 6 women and 6 men (Age: 2660.3 years; mean

6 S.D.). All subjects were right-handed, and all gave informed

consent to procedures approved by Northwestern University IRB

committee.

Thermal stimuli and psychophysical ratings. Stimuli

were delivered to the dorsal aspect of the right arm with a

thermal stimulator (363 cm Peltier) (Medoc TSA-2001; Israel).

Two types of stimulus series, simple and complex, were applied in

a randomized order at different skin locations. The simple stimulus

started at baseline 35uC, with peak temperatures 45uC, 47uC and

49uC, nine stimuli ranging in duration from 10 to 40 s. Durations,

intensities, and inter-stimulus intervals were pseudo-randomized.

The complex stimuli consisted of three stimulus pulses adapted

from [16]: from baseline 35uC sustained for 30 sec the initial peak

was 47uC, after 5 sec the skin temperature further increased by

1uC sustained for 5 sec, then returned to 47uC for 20 sec. After a

50 sec baseline adaptation, the second stimulus pulse was applied

at 47uC for 35 sec. This was followed by 60 sec baseline

adaptation and third pulse consisting of a 47uC, 5 sec stimulus

followed by a 48uC, 5 sec stimulus. Stimulus rise and fall rates

were about 8uC/s (see Figure 2, and Figure S1).

Subjects continuously rated the perceived pain intensity for

simple and complex stimuli using a finger-span device. The

anchors were ‘‘no pain’’ at the lower limit of 0 and ‘‘most intense

pain imaginable’’ at 100. The finger span device was comprised of

a potentiometer the voltage of which was digitized and connected

to a computer providing visual feedback. Participants underwent

an initial training phase prior to data collection. Every subject

performed pain intensity rating for simple and complex stimuli

twice in a randomized order. These subjects were also asked to

rate only the intensity of dull burning sensation evoked by the

simple or complex stimulus in two additional runs, presented in a

randomised order and interspersed between the pain intensity

rating runs.

Model Simulation and Parameter Estimation
Model simulation was implemented with standard integration

algorithms in Matlab. To obtain the simplified Eq. 2 from Eq. 1,

we write

€pp(t)=b~aF (T(t),T0)=b{ _pp(t)zc( _TT(t){l)p(t)=b

Assuming a large decay constant (equiv. a short time scale to

‘forget’), b&1 and that the effect of fast changes in the

temperature profile is negligible, _TT
�� ��%l, we can drop the l.h.s.

term to write

perception from temperature using the second order model (magenta pathway). C: Predictive accuracy on test data of models inferring pain
perception ratings from brain activity. The horizontal axis represents fit correlation between predicted and actual ratings for the three inference
models that do not include the analytic dynamical model (OLS, EN and EN w/lags). The vertical axis is the predictive accuracy for the Combined
model. Note the marked increase in prediction accuracy for the combined model. Each symbol/category is outcome for an individual subject. Dashed
line is identity. D. Average gain in test correlation of the combined model over the three alternative predictive models.
doi:10.1371/journal.pcbi.1002719.g003
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_pp(t)~�aaF (T(t),T0){�ccp(t)

Where �aa~a=b and �cc~cl=b.

Parameter estimates for first order and second order equations

were calculated in Matlab using minimization of the least squares

error between simulation and experimental data, and a random

search technique over the parameter space. For each stimulus

rating condition, three parameters were calculated for first order

fitting and five parameters for second order fitting. Adequacy of

fitting was measured by zero-lag Pearson correlation between

model output and pain ratings.

Overfitting of the model was investigated using the Akaike

Information Criterion (AIC), which penalizes the measure of

goodness of fit with a term proportional to the number of free

parameters [31]. When the residual squared error sum (SS) is

known, the criterion can be written as

AIC~n log
SS

n

� �
z2kzC

where n is the number of samples, and k the number of

parameters. C is a constant that depends on the particular dataset

used, but not on the model, and therefore can be ignored when

making comparisons of AIC between models for the same data. As

even when C is discounted, this measure still depends on the total

number of samples, for presentation’s sake we computed a

normalized version, which we call here the Akaike gain for the

model (m) with respect to the contrasting null hypotheses and first-

order model (c), as

AG~
AIC(c){AIC(m)

n

A positive value for AG indicates that the gain in accuracy of the

model cannot be explained by the increase in number of

parameters. For the first null hypothesis, i.e. perception propor-

tional to temperature, the number of parameters is zero. The

second null hypothesis, perception proportional to temperature

over a threshold, has one free parameter that we estimate similarly

to the analytic models.

The Pearson correlation between the parameters for the second-

order and first-order models was computed using all fitted

parameters across subjects and stimuli (Table S1).

fMRI
The functional MRI data are the same used in an earlier study

[14]. Here the thermal stimulus and related ratings of pain are

used to compare results of full-brain machine learning with elastic

net for predicting pain perception with and without incorporation

of our quantitative model for pain perception, Eq. 1.

Participants. Fourteen healthy subjects participated in the

study: 7 women and 7 men (Age: 35.21611.48 years; mean 6

S.D.). All subjects were right-handed, and all gave informed

consent to procedures approved by Northwestern University IRB

committee.

Pain rating task. Subjects were scanned while rating their

pain in response to thermal stimuli applied to their back (pain

rating task) using a finger-span device. Participants underwent an

initial training phase prior to scanning. The finger span device was

comprised of a potentiometer the voltage of which was digitized

and time-stamped in reference to fMRI image acquisition and

connected to a computer providing visual feedback. A purpose

built, fMRI compatible thermal stimulator delivered painful

thermal stimuli, simple sequence in the psychophysics study, was

applied to the lower back at midline twice, resulting in separate

fMRI data sets.

fMRI data acquisition and preprocessing. Functional

MR data was acquired with a 3T Siemens Trio whole-body

scanner with echo-planar imaging capability using the standard

radio-frequency head coil. Multi-slice T2*-weighted echo-planar

images were obtained: repetition time TR = 2.5 sec, echo time

TE = 30 msec, flip angle = 90u, slice thickness = 3 mm, in-plane

resolution = 64|64. The 36 slices covered the whole brain from

the cerebellum to the vertex. A T1-weighted anatomical MRI

image was also acquired for each subject using the following

parameters: TR = 2.1 s, TE = 4.38 ms, flip angle = 8u,
FOV = 220 mm, slice thickness = 1 mm, in-plane resolu-

tion = 0.8660.86 mm2 and number of sagittal slices = 160.

Image pre-processing prior to using fMRI in predicting pain

perception based on changes in BOLD signal was performed on

each subject’s data using FMRIB Expert Analysis Tool (FEAT,

www.fmrib.ox.ac.uk/fsl). The pre-processing of time-series of

fMRI volumes encompassed: skull extraction using BET; slice

time correction; motion correction; spatial smoothing using a

Gaussian kernel of full-width-half-maximum 5 mm; non-linear

high-pass temporal filtering (120 seconds) and subtraction of the

mean of each voxel time-course from that time-course. Six time

series obtained from rigid head motion corrections were used as

covariates of no interest, to remove residual variance due to head

motion.

Machine Learning with Elastic Net (EN) to Predict Pain
Perception from fMRI Activity

Herein, we learn a predictive model individually for each

subject. We treat voxels as predictor variables, TRs as independent

samples (following [26,27]), and pain ratings as target variables,

respectively. While the independence assumption among subse-

quent TRs does not hold in practice, and is used mainly for

simplicity sake, it allows us to reach good predictive accuracy. We

learn the model parameters using the first half of the experiment as

training data, and then apply the model to the second half of the

experiments, treated here as test data.

Sparse predictive models were learned using a sparse regression

method called the Elastic Net [32], which enhances the basic

LASSO regression [33] by combining 1-norm (sparsity-enforcing)

constraint with the 2-norm (‘‘grouping’’) constraint. The rationale

behind this extension is to overcome a known limitation of the

LASSO: given groups of correlated variables (e.g., spatial clusters

of voxels), LASSO may pick an arbitrary one from the group, as

long as the resulting model predicts well; however, if the goal is

neuro-scientific interpretation of the sparse model as a set of voxels

relevant to the task, it is important to include (or exclude) voxels as

groups (clusters) of highly-correlated variables, rather than single

representatives of a group. This is achieved, to some extent, by

controlling the grouping parameter mentioned above, that tends

to enforce similar coefficients among highly correlated voxels (e.g.,

spatial neighbors). The Elastic Net and other models used in this

paper are formally described below, and summarized in Table 1.

Ordinary Least Squares (OLS) model. Let X1,…,Xn be a

set of N predictor variables (predictors), such as voxel’s intensities,

or BOLD signals, and let Y be the response variable, such as a pain

perception rating. Let X = (x1|…|xn) denote the m6n data matrix,

where each x is an m-dimensional vector consisting of the values

for predictor Xi for m data samples, while the m-dimensional vector

y denotes the corresponding values for the response variable Y. We

consider the problem of estimating the coefficients bi in the
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following linear regression model:

y�~x1b1z . . . zxnbn~Xb ð4Þ

where y* is an approximation of y. As a baseline, we use the

Ordinary Least Squares (OLS) regression approach which finds a

set of bi that minimize the sum-squared approximation error:

b�~arg minb y{Xbk k2 ð5Þ

Where I.I2 represents the 2-norm. When X has the full column-

rank (which also implies that the number of samples m is larger

than the number of variables n), OLS finds the closed-form unique

solution b* = inv (XT X) XT y, where inv() denotes the matrix

inverse, and XT denotes the matrix transpose, respectively.

However, when n.m, as it is often the case in fMRI data with

thousands of predictors (voxels) and only a few hundreds of

samples (TRs), there is no unique solution to the OLS problem,

and additional constraints are required to ‘‘regularize’’ the

problem. Moreover, predictive accuracy of OLS solutions can

be low due to over-fitting in high-dimensional, but small-sample

problems. Finally, OLS does not perform any automatic variable

selection (i.e., all coefficients tend to be nonzero), so that it is hard

to identify which predictors (e.g., voxels) are most relevant to the

response variable.

In the past decades, various regularization approaches have

been proposed in order to improve OLS models to handle

properly large-n, small-m datasets, and to avoid the over-fitting

(e.g., ridge regression [34], bridge regression [35], LASSO

regression [33], and so on. Specifically, recently proposed sparse

regularization methods such as LASSO [33] and Elastic Net [32]

address both of the OLS shortcomings, since variable selection is

embedded into their model-fitting process. Sparse regularization

methods include the 1-norm penalty on the coefficients, which is

known to produce sparse solutions, i.e. solutions with many zeros,

thus eliminating predictors that are not essential.

Elastic net model. In this paper, we use the Elastic Net (EN)

regression approach. This algorithm finds an optimal solution to

the least-squares (OLS) problem, augmented with additional

regularization terms that include the sparsity-enforcing 1-norm

constraint on the regression coefficients that ‘‘shrinks’’ some

coefficients to zero, and a ‘‘grouping’’ 2-norm constraint that

enforces similar coefficients on predictors that are highly

correlated with each other, thus allowing selection of relevant

groups of voxels, which 1-norm constraint alone is not providing.

This can improve the interpretability of the model, for example,

including a group of similarly relevant voxels, rather than one

representative voxel from the group. Formally, EN regression

optimizes the following function

L bð Þ~ y{Xbk k2zl1 bk k1zl2 bk k2
2, ð6Þ

where I.I1 and I.I2
2 represent the 1-norm and (squared) 2-

norm, respectively.

In order to solve the EN problem, we use the LARS-EN

algorithm of [32]. It takes as an input the grouping parameter l2

and the sparsity parameter that explicitly specifies the desired

number of selected predictors; this number corresponds to a

unique value of l1 in Eq. 3. Thus, herein we will slightly abuse

the notation, and following [26] denote the sparsity parameter as

l1 while always interpreting it as the number of selected

predictors.

EN w/lags model. When predicting a stimulus or behavior

from fMRI data, it is typical to use as the predictors the voxels

intensities at the current TR, and treat TRs as independent and

identically distributed (i.i.d.) samples [26]. While this assumption

can lead to over-estimates of accuracy under auto-correlated noise,

temporal information from the past TRs may sometimes improve

the predictive model, as we demonstrate, for example, in [27]. We

considered as a set of predictors all voxels from the past 7 TRs,

and the current TR. However, due to very high dimensionality of

this set, we selected only a subset of those voxels that were

correlated with the response variable above the given threshold

(herein, we used 0.2). (Note that time-lagged voxel’s time series

were shifted forward by the appropriate lag in order to properly

align it with the response time series).

Combined model. The combined model was constructed as

follows. First, we used the training fMRI data and the actual

temperature recording for the corresponding TRs in order to learn

an Elastic Net regression model for predicting the temperature

stimulus from fMRI. Next, given the training data for temperature

and pain perception, we learned the parameters of the analytical

model, second-order differential equation, Eq. 1. We then

combine the prediction of the EN fMRI-to-temperature-to-pain

and the EN fMRI-to-pain models, learning the parameters of the

combined model similarly on the train data.

Table 1. Models summary.

Data for Learning Data for Prediction Predicts

OLS p(t) fMRI(t) p(t)

fMRI(t)

EN p(t) fMRI(t) p(t)

fMRI(t)

EN w/lags p(t) fMRI(t,t-1,..,t-7) p(t)

fMRI(t,t-1,..,t-7)

Combined analytic model + EN p(t,t-1) fMRI(t) p(t)

T(t,t-1) T(t)

fMRI(t)

The table summarizes the four predictive models considered for the inference of pain perception from the fMRI signal. Note that the combined model implicitly predicts
the temperature, but we have not considered it in the present article.
doi:10.1371/journal.pcbi.1002719.t001
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More explicitly, in the testing phase we assume that the

temperature is not actually known (i.e., is a ‘‘hidden variable’’),

and apply the learned EN regression model to the test fMRI data

in order to predict the temperature stimulus. We then apply the

analytical model (Eq. 1) to predict the pain perception given the

predicted temperature, and combine this prediction with the direct

EN regression model for pain in order to obtain the final

prediction.

Training and testing. The data from the pain-stimulus

rating session were split into the training and test subsets: the data

associated with the first 120 TRs were used for training the

models, while the remaining 120 TRs were used for testing the

predictive accuracy. The accuracy of the model was measured by

the Pearson’s correlation coefficient between the response variable

(pain rating) and its prediction by the model.

Discussion

Model Efficacy
The results show that acute thermal pain perception applied to

healthy skin follows simple quantitative deterministic patterns. The

dynamic model is derived from a behaviorally relevant interpre-

tation of pain perception as a warning signal that quickly reports

immediate threat of injury (temperature above threshold), and

approaching danger (rapid temperature increases), and can also as

easily discount the threat once it goes away or it is expected to do

so (temperature decreases). The model, using few parameters, can

reproduce with high accuracy the dynamical transformation from

stimulus to perception. Moreover, the model also has high

predictive accuracy, and accounts for subjects’ variability with

simple and interpretable mechanisms.

The model provides a summary of a relatively complex

behavior, whose physiological correlates and mechanisms can be

directly investigated through pharmacological manipulation and

the design of targeted stimulus conditions. Temporal processing is

ubiquitous in sensory systems, including the somatosensory

pathway [36,37]. However, it is only in a few cases that spatio-

temporal transformations can be functionally interpreted, beyond

generic sharpening for enhanced localization [38], or information

compression [39]. We do not consider, however, that the

perceptual dynamics captured by our model can be reduced to

peripheral processing. In fact, as previously reported [14], the

BOLD response to a task similar to the one used in this report

reveals a rich temporal structure across several cortical and sub-

cortical areas compatible with the time scale of the perceptual

ratings, such that the dynamics of pain perception may result from

the emergent interaction of extensive networks. Moreover, given

its ultimately non-linear nature, the model further predicts

dynamical features of pain perception that may have unexpected

behavioral relevance (see Text S1).

The utilization of our analytic model within the ‘‘mind reading’’

setup highlights its predictive efficacy, and provides an additional

validation step. A further reason for using the combined model,

besides simply inferring pain from fMRI, is to go beyond the

limitation of simple linear inference models such as Elastic Net, while

keeping the non-linear model simple, tractable and interpretable.

Given the nature of brain processes, we expect the true relationship

between the high-dimensional fMRI signal and pain ratings to be a

complex non-linear one. However, fitting an ad hoc non-linear

model (e.g., a neural network) to such high-dimensional data to

predict pain rating directly could be computationally much more

challenging than fitting a linear one. On the other hand, given an

accurate analytical model linking temperature to pain, we may

exploit it advantages in our combined nonlinear method, first

obtaining an estimate of the temperature from fMRI data via simple

and computationally efficient linear regression, and then using

nonlinear model predicting pain from temperature. Though the

combined predictive model involves inferring temperature as a

hidden variable, it outperforms the direct EN model because it

captures (at least the temperature-to-pain part of) the non-linear

relationship between fMRI and pain perception. To some extent, we

can consider the analytic model as a principled constraint in the

temporal domain, similar to the spatial regularization imposed by

EN.

Caveats, Limitations and Outlook
Our model can only provide a limited description of the full

complexity of pain perception. In particular, the model accurately

captures the perceptual dynamics in the time scale of seconds to

minutes, most relevant for the functional interpretation of thermal

pain as an ‘‘alarm signal’’. Processes whose dynamics develop over

longer time scales, such as habituation, sensitization, post-tissue

injury, or following acute or chronic pain conditions [8,11] are

beyond the model’s descriptive capabilities. For instance, repeated

testing of offset analgesia over multiple days in [16] results in

sensitization changes, which however do not alter the quality of

the responses. Nevertheless, our model can provide an analytic

framework even in the context of these long-term adaptive

processes, as it will be possible to study the effect of adaptation on

the different parameters that control the short-term perceptual

dynamics, for instance threshold and decay time-constant.

Another class of perceptual behaviors that our model does not

consider, unrelated to differences in time scale, are those derived

from interactions between pain and cognitive and attention

processes, which can significantly modulate the perception to

objectively similar noxious stimuli [40–41].

Despite its limitations, the model provides a powerful tool with

which peripheral and central mechanisms can be studied. As the

model describes subjective reports of magnitude of pain, it may

also generalize to magnitude perception across other sensory

modalities. Moreover, as we have tentatively shown with the

combined model of fMRI-based prediction, it should be possible to

identify physiological processes associated with the proposed

components of the perceptual dynamics, and so reduce the gap

between phenomenology and theory.

Supporting Information

Figure S1 Individual subjects and group averaged pain
ratings and corresponding models. Pain rating are shown in

blue for simple (first two columns) and complex stimulus (3rd and

4th columns), fitted (red) with first (columns 1 and 3) and second

order models (columns 2 and 4), corresponding parameters (first-

order model: a,l,T0; second-order model: a,b,c,k,T0) and fit

correlations (r) are also presented. Stimulus temperature profiles

are shown on top in green. A. Each row is a single subject. B.
Group-averaged pain perception and calculated models. Note that

group-averaged pain ratings for simple stimuli show better fit

correlations than the individual subject models for the simple

stimulus, and first-order and second-order models are essentially

equivalent and show 97% similarity to the group-averaged pain

rating. This is not the case for the second order model, due to its

non-linear properties.

(TIFF)

Figure S2 A time expansion of part of fig. 2 for the
simple stimulus. Stimulus and pain ratings are shown in balck,

and first (top panel) and second (middle panel) order models are in

red. The first order model consistently over estimates pain relief
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time profile, while the second order model captures this more

accurately (compare corresponding arrows between top and

bottom panels). Note that model performance measures do not

capture such details as variability of rating within and across

subjects dominates such measures.

(TIFF)

Figure S3 Comparison between models and null hy-
potheses for fit correlations between the time derivative
of the actual and modeled perception traces. Panel A.

comparison between the linear models and the 2nd order model, for

simple and complex stimuli (circles and triangles, respectively). The

linear model corresponds to the null hypothesis that perception

follows temperature, while the threshold model assumes perception

follows temperature above a threshold; the temperature threshold is

optimized for each subject. But for a few cases (7 of 48), the second

order model outperforms the linear and threshold models. Panel B.

Same as Panel A, but the horizontal axis corresponds to the time

derivative of the first order model. The first order model outperforms

the second order model in 6 of 24 cases (this difference is statistically

not significant, Wp, p.0.1). Data points correspond to values for

each subject, and the dashed line to the identity.

(TIFF)

Figure S4 Histograms of distributions of parameter
values for all subjects and for simple and complex stimuli.
Panel A: distribution of the 3 parameters for the first order model.

Panel B: distribution of the 5 parameters for the second order model.

(TIFF)

Figure S5 Calculated threshold to pain and time
constant are similar for first and second order models.
Left panel is the correlation of temperature threshold parameter

(in degrees centigrade) between first and second order models, for

simple and complex stimuli. Right panel is the time constant

comparison between the two models (1=c for the first order model,

and 1=b for the second order model) for the simple stimulus.

(TIFF)

Figure S6 Individual subjects perception and predicted
perception based on parameters estimated from a
previous pain rating. Each row is an individual subject.

Parameters estimated from pain rating run 1 are used to model

perception for run 2 in each subject. Fit correlations are shown for

each prediction. Column 1 is for simple stimulus using estimation

from first order model (estimations are shown in Fig. S2, column

1); column 2 is the same data using estimations from second order

model (column 2 in Fig. S2). Columns 3 and 4 are similar for the

complex stimulus. Simple and complex stimuli are very well

predicted for each subject by first and second order models.

(TIFF)

Figure S7 Estimation and prediction relationship for
individual subjects and group averages. Panel A. The

horizontal axis shows the fit correlation between pain perception

and the best second order model for each subject (training, run 1,

parameters estimated from this run); the vertical axis is the

correlation between actual perception and predicted perception

for a second independent pain rating (run 2), with the parameters

learned from run 1 (test correlation). Open and full circles

correspond to simple and complex stimuli conditions, respectively.

As expected, test correlations, i.e. predictions, tend to be less

accurate than training correlations. Panel B. Same as Panel A, but

for parameters learned for the average response to the first run. In

this case, predictions for complex stimuli are less accurate, as they

reveal more clearly individual differences between the subjects.

Panel C. Prediction of first order model for simple stimuli in run 2,

based on estimates of complex stimuli on run1. Panel D.

Prediction of second order model for complex stimuli in run 2,

based on estimates for simple stimuli in run 1.Panel E. Prediction

of second order model for simple stimuli in run 2, based on

estimates for complex stimuli in run 1.

(TIFF)

Figure S8 Rating intensity of burning pain or intensity
of pain result in comparable models. Panel A. Group

average perception (n = 12 subjects) and predicted perception with

corresponding estimated parameters for rating intensity of

burning. Panel B. Group average for rating intensity of perceived

pain (same as Figure S1B). Parameters and fit correlations are

similar for both sets of instructions.

(TIFF)

Figure S9 Comparison between the two-time-constant
model and the second order model, for simple and
complex stimuli. Fit correlations were tested for equality, Wp,

p.0.1, implying no difference between the two models.

(TIFF)

Figure S10 Prediction of offset analgesia I. We use group-

averaged parameters (Figure S1) for the two models and apply the

stimuli reported in figure 3 of Yelle et al. Panel A: patterns of

temperature stimulation with different fall rates, from 0.5 to 5uC/

sec. The 5 different patterns are color-coded. Panel B: result of

simulating the first order model with group-averaged parameters

and the stimulation patterns shown in Panel A. Panel C: same as

Panel B, for the second order model.

(TIFF)

Figure S11 Prediction of offset analgesia II. Same as

Figure S10, for stimuli reported in figure 1 of Derbyshire and

Osborn. Panels A, D and G: temperature stimulation patterns.

The colors indicate the plateau temperature reached. Panels B, E

and H: result of simulating the first order model with the group-

average parameters, for the corresponding stimulation patterns in

the left column panels. Panels C, F and I: same as the center

column panels, for the second order model.

(TIFF)

Figure S12 Interpretation of the model I. Panel A: a

perception signal delayed with respect to the temperature may

integrate the error to zero, while the p _TT term is positive;

conversely, an advanced perception signal will integrate the same

term to a negative value. Panel B: the delayed signal implies a

clockwise trajectory in the pT plane, leading to a positive integral

for pdT ; the converse is true for an advanced signal.

(TIFF)

Figure S13 Interpretation of the model II. Panel A:

Integration of the full Eq. 1 model (red trace), and a model

without the p _TT term (blue trace), for a temperature that consists of

a mean above threshold and an oscillation on top of it (green

trace). Panel B: Fourier analysis of the traces around the main

frequency. The line traces correspond to the logarithm of the

power, while the circles are the phases for each frequency.

(TIFF)

Table S1 Correlation between fitted parameters for the
second- and first-order models. Statistically significant

correlations are indicated in bold-face.

(RTF)

Text S1 Description of additional data, including fits
to individual perception traces, and further compari-
sons between the proposed models. An interpretation of
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the second order model in terms of signal processing is also

included.

(DOCX)
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